A deformable model with cellular neural network

نویسندگان

  • Yongmin Zhong
  • Bijan Shirinzadeh
  • Gursel Alici
  • Julian Smith
  • G. Alici
چکیده

This paper presents a new methodology for deformable models by drawing an analogy between cellular neural network (CNN) and elastic deformation. The potential energy stored in an elastic body as a result of a deformation caused by an external force is propagated among mass points by the local connectivity of cells and the CNN dynamics. An improved CNN model is developed for propagating the energy generated by the external force on the object surface. A method is presented to derive the internal forces from the potential energy distribution established by the CNN. The methodology proposed in this paper can not only deal with large-range deformation, but it can also accommodate both isotropic and anisotropic materials by simply modifying capacitors of cells. Examples are presented to demonstrate the efficacy of the proposed methodology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEVELOPMENT OF NEURAL NETWORK MODELS TO ESTIMATE LATERAL-DISTORTIONAL BUCKLING RESISTANCE OF CELLULAR STEEL BEAMS

The lateral-torsional buckling (LTB) strength of cellular steel girders that were subjected to web distortion was rarely examined. Since no formulation has been presented for predicting the capacity of such beams, in the current paper an extensive numerical investigation containing 660 specimens was modeled using finite element analysis (FEA) to consider the ultimate lateral-distortional buckli...

متن کامل

Deformable Object Modelling Through Cellular Neural Network

This paper presents a new methodology for the deformable object modelling by drawing an analogy between cellular neural network (CNN) and elastic deformation. The potential energy stored in an elastic body as a result of a deformation caused by an external force is propagated among mass points by the non-linear CNN activity. An improved autonomous CNN model is developed for propagating the ener...

متن کامل

Devon: Deformable Volume Network for Learning Optical Flow

We propose a lightweight neural network model, Deformable Volume Network (Devon) for learning optical flow. Devon benefits from a multi-stage framework to iteratively refine its prediction. Each stage is by itself a neural network with an identical architecture. The optical flow between two stages is propagated with a newly proposed module, the deformable cost volume. The deformable cost volume...

متن کامل

A Neural Network Model to Solve DEA Problems

The paper deals with Data Envelopment Analysis (DEA) and Artificial Neural Network (ANN). We believe that solving for the DEA efficiency measure, simultaneously with neural network model, provides a promising rich approach to optimal solution. In this paper, a new neural network model is used to estimate the inefficiency of DMUs in large datasets.

متن کامل

A Cellular Neural Network for Deformable Object Modelling

This paper presents a new methodology for the deformation of soft objects by drawing an analogy between cellular neural network (CNN) and elastic deformation. An improved CNN model is developed to simulate the deformation of soft objects. A finite volume based method is presented to derive the discrete differential operators over irregular nets for obtaining the internal elastic forces. The pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017